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Abstract

As the role of phytoplankton diversity in ocean biogeochemistry becomes widely recognized, the descrip-

tion of plankton in ocean ecological models is becoming more sophisticated. This means that a growing

number of plankton physiological traits need to be determined for various species and under various growth

conditions. We investigate how these traits can be estimated efficiently from common batch culture and che-

mostat experiments. We use the Metropolis algorithm, a random-walk Monte Carlo method, to estimate phy-

toplankton parameter values, along with the uncertainties in these values. First, we fit plankton physiological

models to high-resolution batch culture and chemostat data sets to obtain parameter sets that are as accurate

as possible. Then, we subsample these data sets and assess to which extent the accuracy is sacrificed when

fewer measurements are taken. Two measurement points within the exponential growth stage of the batch

culture data set are sufficient to constrain the maximum protein synthesis rate, the maximum photosynthesis

rate, and the chlorophyll-to-nitrogen ratio. Two measurements during the stationary phase of the batch cul-

ture experiment are then enough to constrain the parameters related to carbon excretion and the photoaccli-

mation time. From the chemostat experiment, only four measured points are needed to constrain the

parameters connected with the internal reserve dynamics of phytoplankton. Thus, we demonstrate that traits

related to key biogeochemical and physiological processes can be determined with only a few batch culture

and chemostat measurements, as long as the measurement points are selected appropriately.

Phytoplankton blooms play a central role in the ocean

carbon cycle, because much carbon export takes place during

these events (Karl et al. 2003). During phytoplankton

blooms, a wealth of different processes are occurring at the

same time. A good example is provided by an observational

study of a bloom in the Bedford Basin on the Nova Scotia

coast (Kepkay et al. 1997). Chlorophyll, organic carbon, and

organic nitrogen increase rapidly, while inorganic nutrients

are depleted. Subsequently, chlorophyll, organic carbon, and

organic nitrogen decrease again. During the bloom, the

C : N ratio of the organic matter is higher than before or

after the bloom. Understanding the dynamics of the C : N

(and C : P) ratio in particular is crucial, because this stoichio-

metric ratio determines the strength of the soft-tissue carbon

pump (Broecker 1982; Volk and Hoffert 1985; Omta et al.

2006). Batch and chemostat culture experiments can be used

to mimic all these developments in the laboratory. More spe-

cifically, the exponential growth stage of a batch culture

experiment is similar to the exponential growth stage of a

phytoplankton bloom, as chlorophyll, organic carbon, and

organic nitrogen increase rapidly, while inorganic nutrients

are depleted. The stationary stage of a batch experiment

then mimics the stage when the cells become nutrient-

starved, followed by the subsequent demise of the bloom. A

chemostat experiment reflects balanced growth conditions

that may be representative of plankton in (tropical) regions

without strong seasonal blooms.

A shift in algal stoichiometry due to nutrient depletion is

evident in batch culture measurements presented in Fig. 1

(Flynn et al. 1994): as nitrogen becomes more limiting, the

phytoplankton C : N ratio increases. Algal stoichiometric

ratios can also shift due to changes in phytoplankton growth

rate which can be studied under controlled conditions in a

chemostat experiment. All these processes can be described
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by plankton physiological models. Combining the physio-

logical models and the measurements, phytoplankton traits

can be constrained. These traits can, in turn, be used in cou-

pled ocean ecological models with which predictions can be

made regarding the global carbon cycle (Vallina et al. 2014).

Rates of photosynthesis, protein synthesis, and internal

reserve turnover are key traits for describing plankton

growth and C : N stoichiometry in ocean biogeochemical

models (Omta et al. 2009; Arteaga et al. 2014). Another

important trait is the regulation of the cellular chlorophyll

content, because chlorophyll is the one biogeochemical vari-

able that is routinely observed at a high spatial and temporal

resolution. Therefore, inclusion of chlorophyll (rather than

simply biomass) is crucial, if ocean carbon cycle models are

to be evaluated (Hemmings et al. 2008). Finally, carbon and

nitrogen excretion are to be considered, because the associat-

ed microbial loop (Azam et al. 1994) may play an important

role in regulating the export of organic carbon to the deep

ocean (Anderson et al. 2007).

Laboratory experiments specifically targeted at each of

these traits tend to be very labor-intensive. Plankton physio-

logical traits may instead be estimated from oceanographic

time series, as was done recently by Mutshinda et al.

(unpubl.). Alternatively, these traits can be estimated by fit-

ting plankton physiological models to more straightforward

batch culture and chemostat measurements. However, even

these relatively straightforward experiments are difficult to

sample at high resolution. Accurately measuring the low bio-

mass concentrations during the early exponential phase

requires a very large sample volume. This is particularly

problematic for small bacterioplankton such as Prochlorococ-

cus and the SAR11 clade which are some of the most ubiqui-

tous marine organisms (Partensky et al. 1999; Rappe et al.

2002). For example, Bertilsson et al. (2003) harvested and

analyzed Prochlorococcus in a 75 mL culture at concentrations

of about 108 cells/mL. To approach environmentally relevant

concentrations of 1–3 3 105 cells/mL (Partensky et al. 1999),

the culture would need to be diluted to at least 25 L. With

chemostats, the long times needed to collect enough sample

at low dilution rates are problematic. Thus, if environmen-

tally relevant growth regimes are to be sampled, then it is

crucial to minimize the number of measurements. It is not a

priori clear how many measurements are needed to con-

strain plankton physiological models accurately, because

these models generally consist of coupled nonlinear differen-

tial equations. To investigate to what extent the accuracy of

the trait estimation is sacrificed when fewer measurements

are taken, we first estimate traits by fitting results of plank-

ton physiological models to experimental data of batch cul-

tures (Flynn et al. 1994) and of a chemostat (Elrifi and

Turpin 1985). What sets both these data sets apart from

others is a combination of a high signal-to-noise ratio and

an extraordinarily high resolution which means that the

parameter estimates can be as accurate as possible. Then, we

subsample the batch culture and chemostat data sets, per-

form the parameter estimates anew and compare the esti-

mates from the full and reduced data sets. Although we limit

ourselves to two data sets and two models here, we wish to

emphasize the broader applicability of our work. Most of the

parameters are present in some form in many phytoplankton

models and our procedure for retrieving them is rather

generic.

Fig. 1. Batch culture measurements for Isochrysis galbana of ammoni-
um and cellular nitrogen (upper panel) and the organic C : N ratio
(middle panel) from Flynn et al. (1994). As the inorganic nitrogen

becomes depleted, the internal phytoplankton reserves shift from nitro-
gen toward carbon, a process schematically depicted in the lower panel.

Omta et al. Extracting phytoplankton physiological traits

2



Models

The batch culture model (described in detail in “Batch

culture” section) was modified from Geider et al. (1998). It

describes the uptake of carbon and nitrogen and their con-

version into phytoplankton biomass. With this model, we

attempt to describe measurements of the growth of the hap-

tophyte Isochrysis galbana in batch culture (Flynn et al.

1994). The chemostat model (described in detail in

“Chemostat” section) follows ideas about the relationship

between internal nutrient stores and the growth rate

(Caperon and Meyer 1972; Droop 1973). These original mod-

els are the basis of our simpler models that resolve fewer pro-

cesses and thus include less parameters. This is because with

limited data, one can either constrain a small number of

parameters well or a large number of parameters relatively

poorly. For our purpose, it is crucial to have a benchmark of

well-constrained parameters which means that the models

need to be as simple as possible.

Batch culture

Our batch culture model has organic carbon (CH in units

mM C), organic nitrogen contained in amino acids 1 pro-

teins (PR in mM N) and chlorophyll (Chl in mM Chl) as var-

iables, because these are the measured quantities in the

Flynn et al. (1994) batch culture data set. The sources of CH

and PR are determined by photosynthesis at a rate CHsynth

(mol C/mol N d21) and protein synthesis at a rate PRsynth

(d21). Both these rates are multiplied with the cell’s PR con-

tent in the equations for the dynamics of CH and PR,

because PR is assumed to be a measure of the amount of syn-

thetic apparatus present in the phytoplankton. We assume

that the photosynthesis rate CHsynth is constant throughout

the experiment, neglecting the diurnal light : dark cycle,

because the diurnal variations in CH and Chl are not very

clear in the Flynn et al. (1994) measurements (Fig. 2). The

organisms use carbon for protein synthesis at a rate CNratio 3

PRsynth (with CNratio the average C : N ratio of the amino

acids in mol C/mol N); carbon is also lost through excretion

(at a rate excr in d21). The cells acclimate by increasing their

chlorophyll content when their carbon content is low and

by decreasing their chlorophyll content when their carbon

content is high. This is formulated mathematically through

a target Chl : protein ratio htar (nmol Chl/mmol N), toward

which the Chl : protein ratio relaxes on a timescale s which

can be thought of as the inverse of Chl or photosystem bio-

synthesis/degradation rates. This target Chl : protein ratio

increases linearly with increasing N : C ratio: htar5b 3 PR
CH

� �
,

with proportionality constant b (nmol Chl mmol C mmol

N22).

Some other models also describe photoacclimation (part-

ly) in terms of the C : N quota (Flynn and Flynn 1998; Ross

and Geider 2009). These formulations are much more com-

plicated than the target Chl : protein formulation; we chose

our formulation for its simplicity. Phytoplankton mortality

is not included in our model; the decrease in particulate

organic nitrogen during the stationary phase of the Flynn

et al. (1994) batch experiment (Fig. 2a) seems too small to

Fig. 2. Model-data comparison for (a) organic nitrogen (mM N), (b)
organic carbon (mM C), and (c) chlorophyll (nM Chl). Blue lines represent

model results for the initial-guess parameter set, black lines for posterior
parameter set, red dots are data for Isochrysis galbana (Flynn et al. 1994).
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constrain a mortality rate well. Thus, the dynamic equations

become:

dCH

dt
5PR 3 CHsynth2CNratio 3 PRsynth2excr

� �
(1)

dh
dt

5
htar2hð Þ

s
(2)

dPR

dt
5PR 3 PRsynth (3)

with h5 Chl
PR the chlorophyll to protein ratio at any given

time. Protein synthesis is directly a function of the ambient

inorganic nitrogen (Nin in mM N) concentration, according

to Michaelis–Menten kinetics:

PRsynth5
lPR 3 Nin

KNin1Nin
(4)

with saturation constant KNin and maximum protein synthe-

sis rate lPR.

Under nitrogen limitation, the molar C : N ratio can

become as high as 20–25 mol C/mol N. The following func-

tion of the cellular C : N ratio effectively forces the cell to

excrete carbon at a rate excr when the C : N ratio of the cell

(Rcell in mol C/mol N) is higher than a threshold value Rexc

(mol C/mol N):

excr5
mexc 3 11tanh Rcell2Rexcð Þð Þ

2
(5)

Chemostat

Our chemostat model distinguishes organic carbon,

organic nitrogen, and organic phosphorus, as organic

C : N : P ratios are the measured quantities in the Elrifi and

Turpin (1985) chemostat data set. Furthermore, we make a

distinction between nitrogen and phosphorus in functional

biomass (NF in mM N and PF in mM P, connected through a

constant N : P ratio RNP in mol N/mol P, that is

NF5 PF 3 RNP) and nitrogen and phosphorus in reserve bio-

mass (PR in mM P and NR in mM N). The uptake of carbon,

nitrogen, and phosphorus is proportional to the functional

biomass. With inflow concentrations Ni (mM N) and Pi (mM

P) and dilution rate d (d21), we have the following dynamic

equations for the inorganic nutrients nitrogen and phospho-

rus in the medium (N in mM N and P in mMP, respectively):

dN

dt
5d 3 Ni2Nð Þ2 Nupt 3 NF (6)

dP

dt
5d 3 Pi2Pð Þ2 Pupt 3 PF (7)

In principle, the nitrogen uptake rate could be chosen to fol-

low Michaelis–Menten kinetics with the inclusion of a satu-

ration constant. However, this saturation constant would

have very little impact on the model predictions, because

nitrogen is not a limiting nutrient in the data set that we are fit-

ting. Therefore, we simply take the nitrogen uptake rate Nupt

(d21) equal to the maximum nitrogen uptake rate Vm;N (d21):

Nupt5Vm;N (8)

The uptake rate of the limiting nutrient phosphorus Pupt

(mol P/mol N d21
) follows Michaelis–Menten kinetics, with

maximum uptake rate Vm;P (mol P/mol N d21) and satura-

tion constant KP (mM P):

Pupt5
Vm;P 3 P

KP1P
(9)

The nitrogen and phosphorus are assimilated into the nitro-

gen and phosphorus reserves NR and PR that are, in turn,

mobilized for growth at a rate l (d21). In general, the growth

rate depends critically on the reserve concentration (or quo-

ta) of the limiting nutrient inside the organisms (Droop

1973; Kooijman 2010) which is in this case phosphorus. We

describe the transfer of reserve to functional biomass with

Michaelis–Menten kinetics, because this transformation rep-

resents a complex of enzymatic reactions:

l5
Vm;QP 3 vP

KQP1vP

(10)

with vP5 PR

PF
; Vm;QP (d21) is the maximum functional biomass

synthesis rate and KQP is a dimensionless saturation

constant.

The dynamics of the nitrogen reserve NR is driven by

uptake, excretion (at a rate excrN in d21), mobilization for

growth, and dilution:

dNR

dt
5Nupt 3 NF2excrN 3 NR2l 3 NF2d 3 NR (11)

while the functional biomass is simply governed by growth

and dilution:

dNF

dt
5 l2dð Þ3 NF (12)

dPF

dt
5 l2dð Þ3 PF (13)

Carbon is taken up and excreted at rates Pm (mol C/(mol N

d)) and excrC (d21), leading to the following equation for

organic carbon CR (mM C):

dCR

dt
5Pm 3 NF2excrC 3 CR2d 3 CR (14)

In Web Appendix A, the steady-state solutions of these equa-

tions are derived. These solutions give rise to complete

expressions for the algal stoichiometric ratios (A.3 and A.5),

which are then fitted against the chemostat data.
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Simulations and trait estimation

To investigate how phytoplankton traits can be estimated

from observations in an efficient manner, we use the follow-

ing procedure. For the two models formulated in the previ-

ous section, we first estimate parameter sets that are as

accurate as possible using high-resolution measurements of

the haptophyte Isochrysis galbana in batch culture (Flynn

et al. 1994) and of the chlorophyte Selenastrum minutum in

continuous culture (Elrifi and Turpin 1985). Subsequently,

we reduce the number of points in each data set and quanti-

fy the loss of accuracy. Furthermore, we vary the distance

between the measured points to investigate the impact on

the accuracy of the parameters. In this way, we aim to

inform experimentalists which measurements to take for an

effective determination of phytoplankton traits. We use the

Metropolis algorithm described in Web Appendix B; the

source code has been included as online Supporting Informa-

tion Material.

Parameter estimation: batch culture

We start from an initial guess for the parameters (listed in

Table 1) estimated through visual trial-and-error optimiza-

tion. For these parameters, the model agrees well with the

measured organic nitrogen, but not with the measured

organic carbon and chlorophyll (Fig. 2, blue lines). The data

from the first 5 d of the batch culture experiment are dis-

carded, as in Geider et al. (1998), because the organisms

have not yet reached their maximum growth rate during

this initial lag phase. In total, we estimate nine parameters:

six physiological traits (lPR, CHsynth, mexc, Rexc, b, s), as well

as the initial concentrations of chlorophyll, organic carbon,

and organic nitrogen. The half-saturation constant for amino

acid synthesis KNin is kept fixed, because this parameter

could not be constrained well using the Flynn et al. (1994)

data set. For the Metropolis procedure, measurement uncer-

tainties are needed, which Flynn et al. (1994) did not pro-

vide. Based on a visual estimate of the spreads in the

measured values (in particular during the stationary phase),

these uncertainties are taken equal to 2 lM, 10 lM, and

2 nM for the organic nitrogen, organic carbon and chloro-

phyll concentrations, respectively. The results of a simula-

tion using the posterior mean parameter values are shown as

the black lines in Fig. 2: both the organic carbon and chloro-

phyll show tremendous improvement compared with the

initial-guess parameter set. There is some correlation

between the parameters (Table 2), in particular between the

Table 1. Variables and parameter values for the batch culture model with associated units.

Symbol Description Initial guess Posterior value Units

CH Carbohydrate/lipid mM C

PR N in protein mM N

Chl N in chlorophyll a nM Chl

Rcell C:N ratio of the cell mol C/mol N

CNratio C:N of protein 6.6 mol C/mol N

KNin Half-sat. N 0.002 mM N

lPR Max. prot. synth. rate 0.3 0.234 6 0.002 d21

CHsynth Max. photosynth. rate 10 2.19 6 0.02 mol C/(mol N d)

mexc Max. C excr. Rate 2.0 1.43 6 0.02 mol C/(mol N d)

Rexc C:N ratio above which excr. happens 10.0 13.49 6 0.11 mol C/(mol N)

s Photoacclimation time 1.0 9.59 6 0.13 days

b Chl:N target increase per amount of

change in N:C ratio

1 57.1 6 0.2 (nmol Chl mmol

Cmmol N22)

CHini Initial carb. conc. 0.1242 0.112 6 0.003 mM C

PRini Initial prot. conc. 0.0186 0.0169 6 0.0002 mM N

Chlini Initial Chl conc. 15 41 6 10 nM Chl

Table 2. Correlations (r2) between fitting parameters of the
batch culture model.

lPR CHsynth mexc b Rexc s

lPR

(d21)

1 0.13 0.09 0.007 0.07 0.04

CHsynth

(mol C/mol N d21)

0.13 1 0.76 0.003 0.41 0.05

mexc

(mol C/mol N d21)

0.09 0.76 1 0.0008 0.05 0.03

b

(nmol Chl mmol

Cmmol N22)

0.007 0.003 0.0008 1 0.03 0.05

Rexc

(mol C/mol N)

0.07 0.41 0.05 0.03 1 0.08

s

(d21)

0.04 0.05 0.03 0.05 0.08 1
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photosynthesis rate (Pm) and the carbon excretion rate

(mexc). Essentially, this reflects that a high estimate of the

photosynthesis rate can be compensated to some extent by a

high estimate of the carbon excretion.

Some of the posterior parameter values can be compared

with independent measurements. For example, radiocarbon

measurements indicate a photosynthesis rate of about 1.5

d21 for Isochrysis galbana during the exponential growth

stage (Hobson et al. 1979). This corresponds to about 10 mol

C/mol N d21, much higher than the 2.19 6 0.02 mol C/mol

N d21 determined here. Possibly, our estimated Pm does not

correspond with the true maximum photosynthesis rate,

Fig. 3. Posterior parameter distributions: lPR (a), mexc (b). For easy
comparison of the distribution relative to each other, each figure covers

a factor 0.1 of the respective parameter. To prevent distortion due to
autocorrelation, every 10th sample has been used for plotting the

distributions.

Fig. 4. Model-data comparison for posterior parameter set with a

reduced batch culture data set. Black lines are the model predictions
using the parameters estimated only from the two blue data points in
the exponential phase, for (a) organic nitrogen (mM N), (b) organic

carbon (mM C), and (c) chlorophyll content (nM Chl). The data points
that were not used in this parameter estimate are in red.
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because the 20 W/m2 irradiation used by Flynn et al. (1994)

may not have been sufficient to saturate the algae complete-

ly. Moreover, Flynn et al. (1994) included a diurnal

light : dark cycle in their experiment. Thus, we are in fact

considering an average photosynthesis rate under a diurnal

light : dark cycle. The photoacclimation time may be com-

pared to measurements of the turnover of radiolabeled chlo-

rophyll. We are not aware of such measurements for

Isochrysis galbana; for the diatom Skeletonema costatum, values

between 3 h and 9 h were measured (Riper et al. 1979),

which is an order of magnitude faster than our parameter

estimate s 5 9.59 6 0.13 d. This difference probably reflects

the very fast growth rate of S. costatum, with division rates

up to 2 d21 (Hitchcock 1980) which is also an order of

Fig. 5. Model-data comparison for posterior parameter set with a
reduced batch culture data set. Black lines are the model predictions

using the parameters estimated only from the two blue data points in
the stationary phase, for (a) organic nitrogen (mM N), (b) organic car-
bon (mM C), and (c) chlorophyll content (nM Chl). The data points

that were not used in this parameter estimate are in red.

Fig. 6. For the stationary phase, the precision and the accuracy of the
estimated parameters s (green) and merc (red) depend on both the
number of data points used and the distance between those data points.

In panel (a), the distance between the points is kept fixed at 2 d and
the number of points is varied. In panel (b), the number of points is
kept fixed at 2, while the distance between the points is varied. In each

case, t 5 17 d is used as the first fitting data point. Vertical axes: ratio of
parameter values obtained from the limited data set to parameter values

from the full data set.
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magnitude faster than I. galbana. Most of the other parame-

ter values obtained here cannot be compared directly with

parameter values from other studies because of differences in

the model formulation. For example, the original Geider

et al. (1998) model included nitrogen quota (internal storage

in, e.g., vacuoles), in contrast with our batch culture model.

Remarkably, we are able to fit the organic carbon data well

during both the exponential phase and the stationary phase,

whereas Geider et al. (1998) were able to fit only the expo-

nential phase well. Probably, our improved fit is due to the

search algorithm that formally minimizes a cost function. In

Fig. 3, histograms of the posterior values are shown for some

of the parameters. The posterior distribution of the maxi-

mum protein synthesis rate (lPR) is relatively narrow, with r
l

50:015; in comparison to the posterior distribution of the

carbon excretion rate (mexc), with r
l 50:028, which suggests

that the mean estimate of lPR is less uncertain than the

mean estimate of mexc.

Reducing the number of measured points from the batch

culture data set, we take careful consideration of the fact

that the exponential growth phase provides insight into

maximum rates, whereas the stationary phase can give infor-

mation about carbon excretion under nutrient stress. Since

an exponential curve is completely determined by two

points, we optimize the maximum protein synthesis rate

(lPR), the maximum photosynthetic rate (CHsynth) and the

photoacclimation parameter (b) using only the measure-

ments at 5 d and 11.5 d after the beginning of the Flynn

et al. (1994) experiment. Starting with the same initial-guess

parameter values as in the fit with the full data set, we

obtain lPR 5 0.217 6 0.018 d21, Pm 5 2.8 6 0.3 mol C/mol N

d21, b 539 6 2 nmol Chl mmol C mmol N22 (fits shown in

Fig. 4). Notably, the parameters have posterior values rather

close (0–30% difference) to the ones obtained from fitting

the full data set.

While the population does not grow anymore during the

stationary phase, the organisms still perform photosynthesis,

which leads to an accumulation of excess carbohydrate in

the cells. Once their C : N ratio exceeds a certain threshold,

the cells may start to excrete part of the excess carbohydrate

(Zlotnik and Dubinsky 1989; Myklestad 1995). We found

that the photoacclimation time (s), the maximum rate of

carbon excretion (mexc) and, to some extent, the threshold

C : N ratio above which carbon excretion occurs (Rexc) can

be constrained using data from the stationary phase alone.

In Fig. 5, we show a fit using two stationary phase measure-

ment points (at 17 d and 21 d). The parameter values

obtained through this fit are s 5 7.22 6 0.12 d and

mexc 5 1.341 6 0.005 mol C/mol N d21 which are on average

about 15% different from the values obtained through the fit

against the full data set; Rexc was unconstrained by this fit.

How close the fitted values are to the values estimated from

the entire data set depends strongly on the number of data

points used for the fit, as well as on the distance between

those data points. This is illustrated in Fig. 6 where we plot

the ratio of the parameter values obtained from the reduced

data set to the parameter values from the full data set. We

think that this is a very informative measure: for example,

one can immediately see that with 2 points at a distance of

2 d, s is underestimated by 40%. With 5 data points separat-

ed by 2 d, s and mexc are within 10% of the values estimated

from the full data set. We need 7 data points (three in the

exponential phase, four in the stationary phase) to estimate

all parameters accurately (parameter estimates in Table 3, fits

in Fig. 7).

Parameter estimation: chemostat

First, we rearrange the model equations as described in

Web Appendix A to enable straightforward calculations for

the millions of iterations of the Metropolis procedure. That

is, we set all the time derivatives equal to 0, because the che-

mostat is at steady state when each of the measurements is

taken. Then, the system is reformulated into equations for

the algal stoichiometric ratios (A.3 and A.5). Starting the

parameter optimization procedure, we perform a simulation

with the initial-guess parameter set listed in Table 4; the

Table 3. Parameter estimates for the batch culture model with associated units when using 7 data points.

Symbol Description Initial guess Posterior value Units

lPR Max. prot. synth. rate 0.3 0.292 6 0.007 d21

CHsynth Max. photosynth. rate 10 2.36 6 0.09 mol C/(mol N d)

mexc Max. C excr. rate 2.0 1.50 6 0.09 mol C/(mol N d)

Rexc C : N ratio above which excr. happens 10.0 11.5 6 0.2 mol C/(mol N)

s Photoacclimation time 1.0 9.2 6 0.3 days

b Chl : N target increase per amount of

change in N : C ratio

1 57.6 6 0.3 (nmol Chl mmol

Cmmol N22)

CHini Initial carb. conc. 0.1242 0.145 6 0.007 mM C

PRini Initial prot. conc. 0.0186 0.0130 6 0.0006 mM N

Chlini Initial Chl conc. 15 9.8 6 1.6 nM Chl
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results are the blue lines in Fig. 8. We estimate four model

parameters (the photosynthesis rate Pm, the nitrogen uptake

rate Vm,N, the maximum reserve mobilization rate Vm,QP,

and the carbon excretion excrC) against chemostat measure-

ments of the chlorophyte Selenastrum minutum under phos-

phorus limitation (Elrifi and Turpin 1985). We use

measurement uncertainties of 0.6 mol C/mol N, 40 mol C/

mol P, and 5 mol N/mol P for the C : N, C : P, and N : P

ratios, respectively, again based on a visual estimate, because

Elrifi and Turpin (1985) did not provide standard errors. The

half-saturation constants for phosphorus uptake and func-

tional biomass synthesis (KP and KQP, respectively), as well

as the maximum phosphorus uptake rate Vm,P and the nitro-

gen excretion excrN are kept constant, because these parame-

ters cannot be constrained well using the chemostat

measurements. The results of a simulation using the posteri-

or mean parameter values (Pm 5 22.2 6 1.1 mol C/mol N d21,

Vm,N 5 4.25 6 0.13 d21, Vm,QP 5 2.7 6 0.3 d21, excrC 5 0.37 6

0.03 d21) are shown as the black lines in Fig. 8. There is

some correlation between the parameters, in particular

between the photosynthesis rate Pm and the carbon excre-

tion rate excrC (Table 5). Again, this reflects that a high esti-

mate of the photosynthesis rate can be compensated to

some extent by a high estimate of the carbon excretion. Nev-

ertheless, even these parameters are constrained within 5–

10% of their mean posterior values. An ammonium pulse

Fig. 7. Model-data comparison for posterior parameter set with a
reduced batch culture data set. Black lines are the model predictions
using the parameters estimated only from the seven blue data, for (a)

organic nitrogen (mM N), (b) organic carbon (mM C), and (c) chloro-
phyll content (nM Chl). The data points that were not used in this

parameter estimate are in red.

Table 4. Variables and parameter values for the chemostat
model with associated units.

Symbol Description

Initial

guess

Posterior

value Units

N Inorg. nitr. mM N

P Inorg. phosph. mM P

NF N in funct. biomass mM N

NR N in reserve biomass mM N

PF P in funct. biomass mM P

PR P in reserve biomass mM P

CR C in biomass mM C

d Dilution rate d21

Ni Input N 2000 lM N

Pi Input P 10 lM P

KP Half-sat. P uptake 0.0001 lM P

KQP Half-sat. funct.

biomass synthesis

0.8 –––

RNP Redfield N : P 16 mol N/mol P

Vm,N Max. N uptake rate 5.0 4.25 6 0.13 d21

Vm,P Max. P uptake rate 5.0 mol P/(mol

N d)

Vm,QP Max. funct. biomass

synthesis rate

2.5 2.7 6 0.3 d21

Pm Photosynthesis rate 10.0 22.2 6 1.1 mol C/(mol

N d)

excrC C loss rate 0.4 0.37 6 0.03 d21

excrN N loss rate 1.0 d21

Omta et al. Extracting phytoplankton physiological traits

9



experiment gave a nitrogen assimilation rate of about 20 d21

(Weger et al. 1988), much higher than our estimated

Vm,N 5 4.25 d21. Possibly, this difference is due to differences

in the experimental setups. The organisms in the pulse

experiment may be hoarding nitrogen temporarily as luxury

uptake, whereas the population in the chemostat is at steady

state.

When reducing the number of data points to 4, we obtain

the following parameter values:

Pm 5 23 6 2 mol C/mol N d21, Vm,N 5 4.4 6 0.3 d21,

Vm,QP 5 2.6 6 0.7 d21, excrC 5 0.35 6 0.05 d21 (fits in Fig.

9) which are on average 8% different from the values

obtained using the full data set. Thus, four data points with

a distance of about 0.5 d21 between them appear sufficient

to constrain the key parameters with a reasonable accuracy.

Having at least one data point at a dilution rate close to the

washout is very helpful, because the curvature of the stoi-

chiometric ratios as a function of the dilution rate can be

determined much better. And this curvature is what con-

strains the internal quota dynamics. If the highest measured

dilution rate is 1.1 d21 (instead of 1.7 d21), then the parame-

ters can still be constrained accurately, but 10 data points

with a distance of about 0.1 d21 between them are needed.

Hence, one either needs to perform at least one measure-

ment in the difficult high-dilution range or one needs to

perform a large number of measurements outside that range.

Discussion

Photosynthesis, nutrient uptake, and carbohydrate excre-

tion are fundamental processes that link across many scales,

being central elements of phytoplankton physiology, as well

as ocean carbon biogeochemistry. As it has become clear that

the rates of these processes are by no means constant, it has

become imperative to determine how they depend on envi-

ronmental conditions and how they vary among and within

phytoplankton species. It is crucial to find an efficient way to

carry this out, because determining growth parameters for a

large number of species and under a large number of different

conditions is very labor-intensive. Therefore, we have investi-

gated the extent to which measurement effort can be reduced,

while still obtaining accurate parameter estimates. To obtain

Table 5. Correlations (r2) between fitting parameters of the
chemostat model.

Vm,n Vm,QP Pm excrC

Vm,n

(d21)

1 0.41 0.39 0.12

Vm,QP

(d21)

0.41 1 0.26 0.09

Pm

(mol C/mol N d21)

0.39 0.26 1 0.80

excrC

(d21)

0.12 0.09 0.80 1

Fig. 8. Model-data comparison for initial-guess (blue lines) and posteri-
or (black lines) parameter set of the chemostat model, with the red dots
Selenastrum minutum measurements (Elrifi and Turpin 1985): (a) C : N

ratio (mol C/mol N), (b) C : P ratio (mol C/mol P), (c) N : P ratio (mol
N/mol P).
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benchmark parameter estimates, we have first performed fits

on full high-resolution data sets. Subsequently, we have sub-

sampled these same data sets so that any differences in the

parameter values could be attributed to the lower resolution.

In the future, this subsampling approach could be extended to

different models and data sets than the ones we used. In that

way, the variability in the traits between different species may

be assessed. Fits by Flynn et al. (2008) indicate particularly

strong variations in the release of dissolved organic matter.

Our results suggest that various key plankton physiologi-

cal traits can be estimated well using relatively few measure-

ments from common batch culture and chemostat

experiments for the model equations imposed. Four data

points from a chemostat experiment were needed to con-

strain the carbon excretion rate (which could alternatively

be interpreted as photosynthesis downregulation), the maxi-

mum average photosynthesis rate under a diurnal

light : dark cycle, the maximum nitrogen uptake rate, and

the maximum internal phosphorus turnover rate. Two data

points from the exponential phase of the batch culture

experiment provided constraints on traits related to growth

(maximum protein synthesis rate, maximum photosynthetic

rate, Chl synthesis), whereas the carbon excretion rate and

the photoacclimation time were estimated from two station-

ary phase data points. Thus, when attempting to constrain

phytoplankton physiological parameters through a mini-

mum number of batch culture measurements, it is crucial to

monitor when the system transitions from the exponential

to the stationary growth stage (using flow cytometry, micros-

copy or, if applicable, measurements of optical density or

culture fluorescence). All this is predicated on having meas-

urements with a sufficiently high signal-to-noise ratio. Our

main findings do not apply, if the variance in the measure-

ments is so high that it drowns out the key dynamics.

The traits estimated from the exponential phase of the

batch culture experiment have a straightforward interpreta-

tion, since the rapid increases in organic nitrogen, organic

carbon, and chlorophyll are driven by protein synthesis,

photosynthesis, and chlorophyll synthesis, respectively. The

interpretation of the slowdown in carbon accumulation dur-

ing the stationary phase is somewhat less straightforward. In

fact, Geider et al. (1998) interpreted it as a downregulation

of photosynthesis, rather than excretion. Although much

evidence has been compiled of organic matter excretion by

phytoplankton through various processes (Thornton 2014),

measurements of dissolved organic compounds would be

needed to distinguish between carbon exudation and photo-

synthesis downregulation. The relatively small Chl decrease

during the stationary phase of the Flynn et al. (1994) experi-

ment (Fig. 2c) may indicate only a weak photosynthesis

downregulation. However, it needs to be noted that Chl is

only one component of the photosynthetic machinery. For

example, the D1 protein could be damaged, leading to

decreased photosynthesis, even if the Chl concentration

remains high.

The traits estimated from the chemostat experiment all

have rather indirect relationships with the actual

Fig. 9. Model-data comparison for posterior parameter set of the che-
mostat model using a reduced data set. Black lines are the model pre-
dictions using only the four blue data points: (a) C : N ratio (mol C/mol

N), (b) C : P ratio (mol C/mol P), (c) N : P ratio (mol N/mol P). The
data points that were not used in this parameter estimate are in red.
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measurements. Nevertheless, algal stoichiometric ratios ulti-

mately need to be connected with the uptake and release

of C, N, and P, so a fundamentally different interpretation

than the one underlying our chemostat model is difficult

to envision. More direct measurements have given a similar

value for the maximum photosynthesis rate, but a much

higher value for the maximum nitrogen uptake rate which

may be due to the specific setup of the experiment (see

“Parameter estimation: chemostat” section). The carbon

excretion rate excrC 5 0.37 d21 estimated from the Selenas-

trum minutum chemostat data appears relatively low, also

in comparison with our estimate from the Isochrysis galbana

batch culture data. Another remarkable feature is that

nitrogen excretion needed to be included for an optimal

model fit. Indeed, recent work suggests that microorgan-

isms excrete significant amounts of nitrogen (Suratman

et al. 2008; Romera-Castillo et al. 2010; Mooshammer et al.

2014), although carbon excretion has received more atten-

tion in the past.

Some important traits could not be constrained well from

the data that we used. For example, we attempted to esti-

mate the half-saturation constant for protein synthesis

(KNin) from the batch culture data, but the Metropolis algo-

rithm tended to push the value to 0. This does not mean

that KNin is really equal to 0, but rather that this parameter

cannot be estimated from the batch culture measurements.

To estimate KNin accurately, the phytoplankton growth rate

would have to be measured at different inorganic nitrogen

concentrations as the culture shifts from nutrient-replete to

nutrient-starved. In the Flynn et al. (1994) data set, there are

simply too few data points within this transition. Generally,

half-saturation constants are most effectively determined

through targeted experiments, for example using radiola-

beled nutrients (Button 1994). Although we were able to esti-

mate photoacclimation parameters, the Flynn et al. (1994)

experiment is actually, in our view, not optimally suited to

constrain photoacclimation, because there are no clear diur-

nal variations in the Chl content. Other data sets with larger

diurnal variations in Chl, for example Ross and Geider

(2009), are likely helpful to constrain photoacclimation

more precisely. Finally, we note that, in some cases, there

exist multiple parameter combinations similar in their ability

to produce good model-data fits, yet with different trait val-

ues (L€optien and Dietze 2015; Grossowicz et al. in press). In

such a case, one expects bimodal or even trimodal parameter

distributions, rather than the Gaussian distributions we

found (Fig. 3).

Conclusion

To constrain the multi-dimensional trait space of phyto-

plankton, growth parameters need to be determined for a

large number of species and under a large number of differ-

ent conditions. This is very labor-intensive, which makes

finding methods to limit the number of measurements

imperative. We have demonstrated that key phytoplankton

physiological traits can be extracted from a batch culture

experiment with only four measurements. From a chemostat

experiment, four data points were needed to extract the key

traits. Any data set is rather specific, for example in terms of

the species used and the measured quantities. This means

that parameter values and even model formulations that we

use are rather specific as well. Nevertheless, we think that

our findings are rather general, because they can be under-

stood from common mathematical features. Both exponen-

tial and linear functions are completely determined by two

points. Therefore, two data points during each growth phase

of a batch culture experiment are needed to constrain the

various accumulation rates in the exponential and stationary

growth phases. During the exponential phase, the rates are

probably close to maximal, so they can be identified with

the maximum protein synthesis, chlorophyll synthesis,

and photosynthesis rates (under a diurnal light : dark

cycle). From the difference in the carbohydrate accumula-

tion rate between the stationary and exponential phases,

a downregulation of photosynthesis or an enhanced car-

bon excretion can then be inferred. To constrain the

hyperbolic internal quota dynamics from a chemostat

experiment (in particular, the maximum functional bio-

mass synthesis rate Vm,QP), four data points are needed,

because the curvature in the measured stoichiometric

ratios needs to be resolved well. Although actual parame-

ter values will be different for each specific organism, our

study shows which information is, in general, needed to

extract these parameter values.
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