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Abstract
We develop a hierarchical Bayesian model linking the abundance of individual phytoplankton species with over a decade
(1995!2011) of environmental data from the Cariaco Ocean Time Series Program in the Cariaco Basin, Venezuela, to
characterize how phytoplankton respond to environmental forcing. Temperature, salinity, irradiance, and macronutrient
concentrations account for 39% of the variation in log cell abundance across 67 species. Individual phytoplankton taxa
varied widely in their response to these environmental variables. A principal component analysis of the environmental
response profiles clearly distinguishes the responses of diatoms and dinoflagellates to environmental forcing. Phytoplankton
abundance primarily varied with temperature, pH, and irradiance, with salinity and macronutrient concentrations acting as
secondary drivers. In the aggregate, our results demonstrate that environmental changes, whether short-term or a result of
climate change, should be expected to have dramatic consequences on the taxonomic composition of phytoplankton
communities.
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Introduction

Phytoplankton are a diverse group of photoauto-
trophs, comprising tens of thousands of species
globally and hundreds of species in local commu-
nities. Some of their photosynthetically fixed organic
carbon is sequestered in the deep ocean through the
biological pump, effectively removing inorganic
carbon from the atmosphere for long periods,
including tens of thousands to millions of years
when buried in sediments (Tedesco & Thunell 2003;
Müller-Karger et al. 2005). Knowledge of the
environmental factors regulating phytoplankton
community composition can offer valuable clues as
to how primary production and carbon biogeochem-
istry may respond to climate change. Irradiance,
temperature, salinity, pH and the concentration of
macronutrients such as nitrate, phosphate and silicic

acid are potential regulators of phytoplankton
biomass, productivity and community structure.
Because these factors change spatially and tempo-
rally, both naturally and as a consequence of
anthropogenic activities, it is of interest to under-
stand the consequences of such changes on phyto-
plankton community structure.

Phytoplankton biomass is strongly influenced by
resource (nutrient and light) availability, but the
presence or absence of a particular species or even
the diversity of the community is considerably more
difficult to predict. Given the diversity and variability
of phytoplankton communities, they are a natural
choice for examining existing theories of biodiversity.
For example, are species abundances in a commu-
nity changing independently of the environmental
conditions, or are species selected according to
competitive abilities or other factors? The resolution

*Correspondence: Crispin Mutshinda, Mathematics & Computer Science, Mount Allison University, 67 York Street, Sackville, New
Brunswick, Canada E4L 1E6. E-mail: cmutshinda@mta.ca

Published in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory,
University of Copenhagen, Denmark

Marine Biology Research, 2013; 9: 247!261

(Accepted 29 July 2012; Published online 3 December 2012; Printed 10 December 2012)

ISSN 1745-1000 print/ISSN 1745-1019 online # 2013 Taylor & Francis
http://dx.doi.org/10.1080/17451000.2012.731693

D
ow

nl
oa

de
d 

by
 [M

ou
nt

 A
lli

so
n 

U
ni

ve
rs

ity
 0

Li
br

ar
ie

s]
 a

t 0
4:

49
 0

5 
D

ec
em

be
r 2

01
2 

http://dx.doi.org/10.1080/17451000.2012.731693


of this question is crucial to understanding how
phytoplankton will respond to climate change. If
communities are assembled at random and relative
species abundances are essentially driven by demo-
graphic stochasticity (random drift) according to the
neutral model (Hubbell 2001, 2005), then taxo-
nomic composition may be unimportant. If, on the
other hand, species are selected according to their
traits, we will need detailed knowledge of these traits
to predict the impact of climate change on phyto-
plankton communities and cascading consequences
on food web structure and carbon biogeochemistry
(Boyd et al. 2010; Finkel et al. 2010).
Statistical analyses of observational data can reveal

the complex array of physiological and ecological
interactions that shape species abundance patterns
in natural communities, and the Cariaco Ocean
Time Series Program in the Cariaco Basin (Vene-
zuela) is well-suited to this purpose. The Cariaco
Basin is a permanently anoxic zone with sediments
recording hundreds to thousands of years of export
production (Peterson & Haug 2006; Black et al.
2007). Because of its geochemical and paleoclima-
tological importance, the CARIACO (Carbon Re-
tention In A Coloured Ocean) Ocean Time Series
Programme was started in 1995 to study the primary
production and export flux in the Cariaco Basin.
Over 16 years of monthly observations on hydro-
graphy, water chemistry, macronutrient concentra-
tions, settling sediment flux and phytoplankton
species abundance and taxonomic composition
make this an ideal site to examine the controls on
phytoplankton community structure. Here we devel-
op a hierarchical Bayesian model (Gelman et al.
2003) linking phytoplankton abundance patterns in
the in the Cariaco Basin to potential environmental
drivers to determine the degree to which species
respond to environmental forcing.

Overview of the Bayesian modelling approach

Bayesian inference is an approach to statistical
analysis where all uncertainty is expressed in terms
of probability. The major difference between the
classical (frequentist) and the Bayesian approach is
that the classical approach treats parameters as fixed
unknown quantities and seeks the parameter values
that maximize the likelihood of the data at hand,
whereas in the Bayesian paradigm, all unknown
quantities are treated as random variables on which
the investigator is required to specify a prior dis-
tribution to describe prior knowledge about the
plausible values, before observing the data. For a
parameter u, the prior distribution is denoted as
p(u). After observing some data y, the likelihood,
p(yNu), of the data is used to update the prior

knowledge about u encoded in the prior p(u) into
a posterior distribution p(uNy) according to Bayes’
rule as p(uNy)"p(u)p(yNu)/p(y), where the marginal
distribution of the data, p yÞð ¼

Ð

H p yjhð ÞP hð Þdh, is
nothing but a normalizing constant that ensures the
posterior integrates to 1. The posterior distribution
is the target of Bayesian inference as it represents the
data-updated state of knowledge about the plausible
values of unknown quantities, and allows a direct
quantification of the uncertainty in the parameters.
Bayesian conclusions arise in the form of probabil-
istic statements about the unknown quantities, based
on their posterior distributions.

In models with many parameters, the computation
of the normalizing constant p(y) involves a high-
dimensional integral with typically no analytical
solution. For example, if the model involves k
parameters denoted as u1, . . . ,u2, then pðyÞ ¼

Ð

H1

. . .
Ð

Hd
p yjh1; ::; hkð Þp h1; ::; hkð Þdh1 . . . dhk. Note that

multidimensional integrals arise also in computing
the marginal distributions of individual parameters.
For example, if one’s focus is on u1 only, then the
rest of parameters are viewed as nuisance para-
meters, and integrated out. That is, pðh1jyÞ ¼

Ð

H2

. . .
Ð

Hk
p h1; ::; hkjyð Þdh2 . . . dhk. A similar argument

applies when making predictions based on a fitted
model, in which case all model parameters are
integrated out as nuisance quantities. Hence, the
predictive distribution of a future observation, ỹ,
based on a fitted model with parameter u"(u1, . . . ,
uk)

T is defined by pð~yjyÞ ¼
Ð

H1
. . .

Ð

Hk
p ~yjh1; ::; hkð Þ

p h1; ::; hkjyð Þdh1 . . . dhk. Bayesian inference, there-
fore, allows one to fully take into account the
uncertainty about the parameter estimates when
making predictions with the model.

Markov chain Monte Carlo (MCMC) simulation
methods (e.g. Gilks et al. 1996, p 1!19) are the most
popular approach to evaluating posterior distribu-
tions in high-dimensional Bayesian models. The
principle of MCMC is to generate a large sample
from a distribution of interest (usually the joint
posterior), and base inferences on the simulated
sample. For example, the posterior mean and var-
iance of a given quantity can be estimated by the
mean and variance of anMCMC-generated posterior
sample. Moreover, the bounds of the 100(1#a)%
credible interval (Bayesian analogue of confidence
interval) are given by the a/2 and (1#a/2) quantiles
of the simulated samples. Credible intervals can be
used for hypothesis testing by considering the hy-
pothesis that a parameter u equals some fixed value
u0 plausible if the 100(1#a)% credible interval of
u covers u0, and implausible otherwise.

Simulation-based methods such as MCMC are
particularly important when dealing with hierarchi-
cal Bayesian (HB) models (e.g. Gelman et al. 2003,
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p 117!56; Berlinier 1996). These are Bayesian
models where prior distributions are specified in a
hierarchical structure. That is, the parameters in-
volved in the likelihood have priors, and the para-
meters of these priors may also have priors (so-called
hyper-priors), whose parameters (hyper-parameters)
may in turn have priors, and so on, with the process
coming to an end when no more priors are intro-
duced. The HB modelling provides a valuable
framework for analysing data with complex struc-
tures by defining realistic priors that match the
system being studied.

Materials and methods

Study site and environmental data

The Cariaco Basin is a large (!160 km long, 70 km
wide and !1400mdeep) structural depressionon the
northern continental shelf of Venezuela. The Cariaco
Ocean Time Series programme has occupied a time
series in the basin (10830?N, 64840?W) to collect
observations on a monthly basis since November
1995. During the upwelling season (usually
December!January to April!May), the Trade Winds
intensify coastal upwelling that bring nutrients from
deep waters to the surface, increasing primary pro-
ductivity by a factor of 10 compared to typical
productivity values observed in November. Some of
the resulting organic material remains ungrazed and
sinks.Thedecomposition of the sinkingmaterial leads
to permanent anoxia below!250 m depth (Richards
1975; Müller-Karger et al. 2001, 2004, 2010).
The CARIACO Ocean Time Series surveys have

been conducted using the R/V Hermano Ginés of the
Fundación La Salle de Ciencias Naturales de Vene-
zuela. During each cruise, samples are collected from
up to 20 depths between the surface and 1310 m. We
used data from the seven depths closest to the surface
where environmental data and phytoplankton sam-
ples were taken together at 1, 7, 15, 25, 35, 55 and
75 m. Analyses of bottle samples (temperature,
salinity, pH, macronutrient concentrations) are con-
ducted according to standard field methods with
minor modifications (the operational field manual is
available at: http://imars.usf.edu/pubs/CARIACO_
Methods_Manual.pdf). Phytoplankton in discrete
samples (50 ml for cruises 1!112 and 100 ml for
cruises 113!167) at each depth were identified to
species level, and counted (cells l#1) using the
Utermöhl technique (Hasle 1978). The phytoplank-
ton and environmental data are archived online in the
Cariaco Ocean Time Series database (http://www.
imars.usf.edu/CAR/ (accessed 24 November 2012)).
As a quality control step, we assembled the

taxonomic identifications made across all cruises,

removed observations that were not clearly identified
as phytoplankton, corrected spelling variations, and
grouped synonyms using taxonomic information in
AlgaeBase (algaebase.org). In total there were 525
phytoplankton species observed, of which the ma-
jority were identified to the species level. We
analysed the abundance of the 67 most frequently
observed phytoplankton species from six different
functional groups: diatoms, dinoflagellates, cocco-
lithophores, cyanobacteria, ciliates and silicoflagel-
lates (Table I); 11 of these are genera-level
classifications, and one (Emiliania$Gephyrocapsca)
is a mixture of two common coccolithophore genera.
When a species was not observed in a given cruise,
abundance was set to half the minimum observable
threshold (5 !10#3 cells l#1). Phytoplankton abun-
dance data were available for 167 out of the 177
cruises spanning November 1995 to January 2011;
they are missing for cruises 22, 30, 36, 57, 58, 95,
96, 99, 100 and 139.

Seven variables were considered in the analysis of
possible relationships with phytoplankton abun-
dance: water temperature (8C), salinity (psu), macro-
nutrient concentration (nitrate, phosphate, silicic
acid, mmol l#1), pH and irradiance. Irradiance was
estimated from Sea-viewing Wide-Field-of-View
(SeaWiFS) satellite-derived monthly sea-surface
PAR (molm#2 day#1) andwas attenuated over depth
using the diffuse attenuation coefficient k490 (m#1)
obtained fromGiovanni (http://disc.sci.gsfc.nasa.gov/
giovanni) from a 0.48%0.48 box around the CAR-
IACOOcean Time Series station from October 1997
to December 2010. The monthly SeaWiFS average
was used for months outside this period. Irradiance at
depth z was attenuated according to the Beer!
Lambert law, E(z)"E(0)e#kz, and averaged over
the mixed layer (0!25 m at our sampling resolution).
Bio-optical properties at the CARIACO station are
summarized by Lorenzoni et al. (2011).

Missing environmental data (4!5% of the macro-
nutrients, 14% of the pH andB1% of salinity and
temperature) were estimated using averages of the
available data for the corresponding months based on
the entire data set. Although there are trends in some
of the data (increasing temperature, decreasing
macronutrient and salinity: see Taylor et al. 2012),
the monthly and annual variation is much larger than
the trend over 15 years. A small number of observa-
tions (B 10 or 1%) of the environmental data were
unrealistic and were removed from the data set.

Model specification

Our goal is to test whether there are significant effects
of key environmental variables on phytoplankton
abundance and community structure or vice versa.

Environmental drivers of phytoplankton species 249
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We describe the log abundance of each species as a
linear function of scaled environmental factors. The
estimated coefficients of each environmental variable
can be interpreted as the expected change in the
corresponding species’ log abundance resulting from
a change of one standard deviation in the value of the
environmental variable when the rest of environmen-
tal variables are held at their mean values. While non-
linear interactions are possible, a linear model usually
provides a good approximation of a non-linear func-
tion around a given point if the argument’s range is not
too wide, by virtue of the first-order Taylor approx-
imation. It is worth noting that on the original scale,
our model assumes a non-linear relationship of the
form y"aebx, a"0, b # R between the abundance, y,
of a given phytoplankton species and the value, x, of
each environmental variable.

We have discarded temporal information by treat-
ing the phytoplankton abundances as a set of inde-
pendent samples, conditionally on the included
environmental variables. This is because phytoplank-
ton abundances change over time scales of days to
weeks and our samples were collected monthly,
suggesting that there will be little temporal autocorre-
lation in the data. However, the validity of such an
assumption is worth checking because temporal
correlations may result from latent (unmeasured)
environmental variables with slower time scales than
phytoplankton. We examined this assumption (see
Results) by verifying that the residual errors at
different depths, after removing the effects of the
involved environmental variables, are serially uncor-
related.

A traditional frequentist approach, such as a
multiple linear regression, would impose no assump-
tions on the distribution of estimated effects, and the
correlations among the environmental data would
complicate the interpretation of the effects and their

Table I. Most frequently observed species at the Cariaco study

site, with functional group classification, over the time series

(November 1995!January 2011). Names without authorities are
not in algaebase.org or marinespecies.org.

Diatom

Bacteriastrum delicatulum Cleve
Bacteriastrum sp. Shadbolt

Cerataulina pelagica (Cleve) Hendey

Chaetoceros affinis Lauder
Chaetoceros anastomosans Grunow

Chaetoceros compressus Lauder
Chaetoceros decipiens Cleve

Chaetoceros didymus Ehrenberg
Chaetoceros lorenzianus Grunow

Chaetoceros sp. Ehrenberg
Chaetoceros sp. 2
Cylindrotheca closterium (Ehrenberg) Reiman & Lewin
Dactyliosolen fragilissimus (Bergon) Hasle apud G.R. Hasle &

Syvertsen

Eucampia zodiacus Ehrenberg
Guinardia delicatula (Cleve) Hasle

Guinardia flaccida (Castracane) Peragallo

Guinardia striata (Stolterfoth) Hasle

Haslea wawrikae (Husedt) Simonsen
Helicotheca tamesis Ricard
Hemiaulus hauckii Grunow in Van Heurck

Hemiaulus sinensis Greville

Lauderia annulata Cleve
Leptocylindrus danicus Cleve

Leptocylindrus mediterraneus (H. Peragallo) Hasle

Leptocylindrus minimus Gran
Navicula sp. Bory de Saint-Vincent

Navicula yarrensis Grunow

Nitzschia fluminensis Grunow

Nitzschia longissima (Brébisson in Kützing) Ralfs in Pritchard
Proboscia alata (Brightwell) Sundström

Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle

Pseudo-nitzschia pungens (Grunow ex P.T. Cleve) Hasle

Pseudo-nitzschia seriata (P.T. Cleve) H. Peragallo in H. & M.
Peragallo

Pseudo-nitzschia sp. H. Peragallo in H. & M. Peragallo

Pseudo-nitzschia subfraudulenta (Hasle) Hasle

Rhizosolenia hebetate J. W. Bailey
Rhizosolenia imbricate Brightwell
Rhizosolenia setigera Brightwell

Rhizosolenia styliformis Brightwell

Skeletonema costatum Greville (Cleve)

Thalassionema delicatula
Thalassionema frauenfeldii (Grunow)

Thalassionema nitzschioides (Grunow) Mereschkowsky

Thalassiosira gravida P. T. Cleve

Thalassiosira rotula Meunier
Thalassiosira sp. Cleve

Thalassiosira subtilis (Ostenfeld) Gran

Dinoflagellate

Gonyaulax polygramma Stein

Gymnodinium mitratum Schiller
Gymnodinium sp. Stein

Gyrodinium fusus (Meunier) Akselman

Gyrodinium sp. Kofoid & Swezy

Heterocapsa triquetra (Ehrenberg) Stein
Neoceratium lineatum (Ehrenberg) F. Gomez, D. Moreira & P.

Lopez-Garcia

Prorocentrum gracile Schütt
Prorocentrum micans Ehrenberg

Scrippsiella sp. Balech ex A.R. Loeblich III

Scrippsiella trochoidea (Stein) Balech ex A.R. Loeblich III

Coccolithophore

Calcidiscus leptoporus (Murray & Blackman) Loeblich & Tappan

Calcidiscus sp. Kamptner

Calciopappus caudatus Gaarder & Ramsfjell

Calciosolenia murrayi Gran
Emiliania sp. Hay & Mohler, in Hay, Mohler, Roth, Schmidt &

Boudreaux$Gephyrocapsa spp. Kamptner

Cyanobacteria

Synechococcus sp. Nägeli

Trichodesmium thiebautii Gomont

Ciliate

Mesodinium rubrum (Lohmann, 1908)

Silicoflagellate

Dictyocha fibula Ehrenberg

Table I (Continued)
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significance. The hierarchical Bayesian approach
adopted here allows us to estimate the joint distribu-
tion of the environmental effects, which involves
their correlations. More specifically, letting ys,d,k
denote the natural logarithm of the observed abun-
dance of species s at depth d"1, 2, 3, 4, 5, 6, 7
(corresponding, respectively, to 1, 7, 15, 25, 35, 55
and 75 m) in cruise k, we assume that:

ys;d;k $ N ls;d;k; r
2
s

" #

(1)

and

ls;d;k ¼ as þ
XJ

j¼1
bs;jx

j
k;d ; (2)

where as is a random intercept characterizing the log-
abundance of species s when all predictors are held at
their average values, and bs,j represents the effect of
the jth environmental variable on the log abundance
of species s. The raw environmental data are
standardized to a mean of 0 and a variance of 1
using the data in Table II. If we let !as denote the
posterior mean of as, then the expected log-
abundance of species s with regard to variation in
the jth environmental variable when all other vari-
ables are held at their mean values is !as þ bs;jx

j.
Noting that xj is the standardized deviation of the
observed value of the jth environmental variable
from its mean value, it follows that a positive value of
bs,j implies greater abundance of species s when the
jth environmental variable is above its mean value.
Environmental data are often correlated. In a

regression setup, strong correlations between pre-
dictors often lead to correlated regression coeffi-
cients, making it difficult or even impossible to tease
apart their individual effects, as different parameter
combinations can produce exactly the same fit. This
parameter identifiability issue can be addressed by
explicitly modelling and estimating the covariance
structure of the regression coefficients. Here we
assume that the vector bs"(bs,1, . . . ,bs,J) of environ-
mental effects on the log-abundance of species s is
a-priori multivariate normally distributed around the
zero-vector 0J"(0, . . . ,0), with a covariance matrix

denoted by X
J&J

. The diagonal elements, Vi,i, are the

variances of the environmental effects, and the off-
diagonal elements, Vi,j (i"j), are co-variances be-
tween the effects of the ith and jth environmental
variables. Consequently, the correlation between the
effects of the ith and jth environmental variables on
the log-abundance of species s is given by

qi;j ¼ Xi;j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi;iXj;j

q

(3)

The covariance matrix V is assigned a prior (see
below), and estimated from the data alongside the
other model parameters. Implicit in the definition of
V is the assumption that the association between
environmental effects on species abundance is iden-
tical across species, independently of their functional
groups. A convenient prior for covariance matrices
that guarantees the positive-definiteness of the
posterior is the inverse-Wishart distribution (see
e.g. Gelman et al. 2003). Here we assumed that
V!InvWishJ (IJ%J) where IJ%J denotes the J%J
identity matrix, and V!InvWishk (R), stands for the
inverse Wishart distribution with scale matrix R and
k degrees of freedom. We set the number of degrees
of freedom to its maximum value J (the rank of V) to
convey a lack of prior information about V. We
assigned N 0; r2

að Þ priors independently on the spe-
cies-specific intercepts, as, and independent Ga(a,b)
priors on the species-specific variances r2

S, where
Ga(a,b) denotes the Gamma distribution with mean
a/b and variance a/b2). Finally, we placed Ga(1,1)
priors on r2

a and on the hyper-parameters a and b.
We usedMCMCsimulation (Gilks et al. 1996, p 1!

19) through the Bayesian freeware OpenBUGS
(Thomas et al. 2006) to sample from the joint
posterior of the model parameters. We ran 100,000
iterations of three Markov chains, discarding the first
5000 samples from each Markov chain as burn-in,
thinning the remainder to each 20th sample to reduce
the correlation between consecutiveMCMCsamples.
Although the chains proved to converge within the
first 1000 iterations and were mixing very well, we
decided to run the chains much longer, i.e. for
100,000 iterations which took roughly 24 h on a PC.
With this large number ofMCMCiterations, applying
the relatively large thinning factor of 20 to reduce the
correlation between consecutive MCMC draws still
leaves us with a large posterior sample for inference.

We computed the correlations among the environ-
mental variables and compared these with the esti-
mated correlations between the effects bs,j, to
determine if the correlations between environmental
effects on the log-abundance of individual species
were following the correlation structure in the envir-
onmental data or were deviating from it. We per-
formed a principal components analysis on the

Table II. Environmental variables observed in the Cariaco Ocean

Time Series and selected for this analysis. All variables are
standardized to mean 0 and variance 1 before being used in the

model to facilitate comparison of the estimated effects.

Variable Units Mean SD Range

Irradiance mol m#2 day#1 9.99 9.93 0.00!29.30
Temperature 8C 24.14 2.34 19.38!30.06
SiOH4 mmol l#1 2.23 3.43 0.00!63.94
PO4 mmol l#1 0.19 0.21 0.00!3.13
NO3 mmol l#1 2.27 3.59 0.00!29.80
Salinity psu 36.78 0.17 35.84!37.07
pH ! 8.02 0.06 7.86!8.12

Environmental drivers of phytoplankton species 251
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estimated effects bs,j to determine if the effects
exhibited any structure at the species or functional
group level using R (R Development Core Team
2011).
Species abundance patterns and community com-

position result from a complex interplay between
demographic stochasticity, density-dependence reg-
ulation and environmental stochasticity (Mutshinda
et al. 2009, 2011). Environmental stochasticity
refers to the variability in species abundance patterns
caused by fluctuations in environment conditions
with regard to both abiotic factors, like climate and
weather, and biotic factors (trophic and extra-
trophic interactions). Population time series col-
lected over many years are also prone to observation
error. Teasing apart these different sources of varia-
tion is a difficult task that requires highly structured
models with an explicit account of the diverse
sources of variability. In our model, the variance
parameters r2

s describe the unexplained variability at
the species level and the hyper-parameters a and b
describe the unexplained variability at the commu-
nity level. These hyper-parameters are estimated by
borrowing strength across species through the data
used to estimate the idiosyncratic variance para-
meters r2

s for each species, thereby mitigating the
estimation problem posed by the smaller sample
sizes for some of the study species.
A direct evaluation of the overall amount of varia-

tion explained by the environmental predictors stu-
died can be estimated by comparing the unexplained
variances between the full model including the
environmental predictors under consideration and
the null model without any environmental covariates.

Results

Phytoplankton species richness varied from 4 to 100
species per cruise, with a mean of 40 over the
CARIACO time series (167 cruises from November
1995 to March 2011). Over a third of the species
(187 of 525) were only observed during one or two
cruises in the entire study. To ensure sufficient data
for each species, we restricted our analysis to the 67
species observed in 50 or more samples (Table I).
This subsample includes an average of 85% of the
cells counted on each cruise and thus describes most
of the variation in phytoplankton cell abundance, but
not most of the species richness. These species were
found in an average of 139 samples each, but because
there are 167 (cruises)%7 (depths)"1169 samples,
the abundance record for any one species is mostly
comprised of zeros, due either to true absences or
abundance below the detection threshold. We used
an estimated abundance of half the detection limit
(0.5 cells per 100 ml) for species not observed in a

sample. The mean and standard deviation of each
environmental variable are summarized in Table II.

We identified significant relationships between
environmental variables and abundance for 63 of
the 67 individual taxa examined from 15 years of the
Cariaco Ocean Time Series. The environmental
linkages varied widely across species and environ-
mental variables with many effects being significantly
different from zero as indicated by the 95% credible
intervals (Figure 2).While some environmental vari-
ables were found to have no effect on log abundance
for some species, more than half of the environ-
mental variables showed a significant relationship.
There are broad trends in the sign and magnitude of
environmental effects on log abundance across
species and functional groups (Figures 1a,b). Tem-
perature, irradiance, and pH coefficients are most
likely to be significantly different from 0, and their
effects have the largest magnitude. The sign of these
effects was broadly consistent across species, but
there was substantial variability across taxa, within
and across functional groups. There were only four
species with no significant effect for any environ-
mental variable on log abundance (Nitzschia
fluminensis and Thalassionema. fraueneldii, both dia-
toms; Gonyaulax polygramma, a dinoflagellate; and
Dictyocha fibula, a silicoflagellate). Our results in-
dicate that changes in environmental conditions will
change the abundance of most species and that there
will be complex taxonomic structure changes due to
the effects of changing environmental conditions.

The interpretation of the effect, bs,j, of the jth
environmental variable on the log-abundance of
species s, is straightforward: it is the expected
increase in log abundance of phytoplankton for a
unit change in the standarized value of the environ-
mental condtions when all other variables are held at
their mean values. The reported effects are com-
puted from the marginal posterior p(bs,jjData), by
integrating the joint posterior p(bsjData) over all
other parameters. The posterior estimate of the
covariance matrix V reveals associations among
the environmental effects which can be distinct
from the correlations among the observed environ-
mental variables themselves (Table III).

Temperature, pH and irradiance were strongly
associatiated with phytoplankton abundance, with
the most non-zero effects. The coefficients of
temperature were broadly negative, particularly for
the diatoms (Figure 1a), indicating lower cell con-
centrations at warmer temperatures. There are a few
exceptions to this general trend. About one-third of
the diatom species, mostly those with relatively low
abundance, have no significant response to tempera-
ture, indicating a division within the diatoms in their
traits for these variables. Dinoflagellates were mixed
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Figure 1. Posterior means (filled square if significantly different from zero, otherwise not shown) and 95% credible interval (horizontal line)

of the effects for scaled (A) temperature, pH, irradiance, salinity, and (B) nitrate, phosphate and silicic acid concentration. A dashed vertical

line indicates 0 effect. Horizontal lines divide diatoms, dinoflagellates, coccolithophores and other functional groups (Table I). Effect scales all
have the same width (3 units). Species are sorted according to median abundance within each functional group. The last panel in (B) shows

the median log10 abundance (square), maximum log10 abundance (diamond), and median91 SD (horizontal line) for the samples each

species was found in and not counting zeros.
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in their responses to temperature, indicating a range
of strategies.
The coefficients associated with pH were broadly

positive, with most exceptions among the dinoflagel-

lates. On the other hand, the coefficients associated
with irradiance were generally negative. However,

these associations of pH and irradiance with phyto-

plankton abundance should be interpreted with

caution since phytoplankton abundance can
affect irradiance and pH (see Discussion). In fact, as

this is a statistical study of observational data, we did

not make causal conclusions from these data alone.
This limitation does not affect our ability to

characterize how the environmental variables relate

to the log abundance of individual phytoplankton
species.

Figure 1. Continued
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The point measurements of macronutrient con-
centration were generally less important as explana-
tory variables of phytoplankton abundance (Figure
1b) compared to temperature, pH and irradiance.
Nitrate concentration was broadly positively asso-
ciated with the abundance of diatoms, while its
effects for other functional groups were mostly non-
significant. Nitrate is not always limiting at the study
site, but upwelling (estimated using temperature and
salinity as proxy) stimulated community productivity
due to nutrient additions (Müller-Karger et al. 2001,
2004). The effect of phosphate concentration was
frequently non-significant, even among the diatoms.
The coefficients of silicic acid concentration were
broadly non-significant for the dinoflagellate, cocco-
lithophorid, ciliate and silicoflagellate species, but
positive for about half the diatoms under study.
There are a few exceptions to the above trends:
positive nitrate effects for Gyrodinium sp. and
Prorocentrum gracile (dinoflagellates), and negative
phosphate effects for Neoceratium lineatum (dinofla-
gellates), positive phosphate effects for Calcidiscus
leptoporus (coccolithophorids), and a negative nitrate
effect for Calcidiscus leptoporus and Calcidiscus sp.
(coccolithophorids). The two cyanobacteria
Synechococcus sp. and Trichodesmium thiebautii
showed contrasting effects for most environmental
variables, although not all differences were signifi-
cant. Trichodesmium showed a significantly positive
effect of temperature and a nearly significant effect
of irradiance, while Synechococcus sp. had a large
positive effect for phosphate concentration.
Salinity effects were significant for about half of

the taxa. There was a small seasonal oscillation in
salinity, varying from 36.6 to 37.0 psu for January!
August and decreasing to 36 psu for the last four
months of the year. The high abundance species and
most of the diatoms had positive salinity effects
(Figure 1a), consistent with their dominance during
the productive months of January!August. The less-

abundant diatoms and dinoflagellates had negative
salinity effects, indicating that they are more abun-
dant towards the end of the year in lower productiv-
ity environments.

There was an overall positive relationship between
the magnitude of the effects of environment and the
median abundance of taxa (Figures 1a,b) for the
most significant variables (temperature, pH, salinity,
and nitrate concentration). Some of the species with
the largest abundance (Pseudo-nitzschia sp. and
Synechococcus sp.) had the largest magnitude effects,
but this is not universal: the most abundant species
in each functional group had smaller effects than
intermediate abundance species, and the least abun-
dant species still frequently have significant effects.

Scatterplots of pairs of environmental effects
(Figure 2) showed taxonomic structure with diatoms
and dinoflagellates (the two most diverse functional
groups) appearing in largely non-overlapping clus-
ters. We performed a principal component analysis
of the environmental response profiles. The first two
principal components accounted for 88% of varia-
tion in the effects of the environmental variables
across species. The biplot of the first two principal
components (Figure 3) illustrated the structure in
the environmental effects within and among func-
tional groups clearly distinguishing the responses of
diatoms and dinoflagellates to environmental for-
cing. About half of the dinoflagellate species are
outside the large cloud of diatoms and the other half
are on the edge of the diatom clusters. Other
taxonomic groups were represented by very few
species and could not be separated out from the
diatoms and dinoflagellates.

The posterior correlation matrix between environ-
mental effects on species abundance estimated from
Equation (3) and the correlations between the
observed environmental variables (Table III) illus-
trates whether effects mirror the environment or
contrast with them and reveal ecophysiological

Table III. Correlations, r, between environmental data (top row) and correlations, r, between the posterior distributions of model effects

estimated with the Bayesian model (bottom row, Equation 3); bold numbers indicate coefficients whose 95% credible intervals exclude

zero.

pH Irradiance Salinity NO3
# PO4

# SiO4

Temperature 0.85 0.74 #0.51 #0.74 #0.70 #0.45
!0.90 0.50 !0.59 !0.65 #0.17 #0.32

pH 0.73 #0.28 #0.86 #0.79 #0.60

!0.49 0.59 0.68 0.20 0.33

Irradiance #0.31 #0.67 #0.64 #0.47
!0.24 !0.30 #0.01 #0.10

Salinity 0.13 0.09 #0.11

0.51 0.09 0.27

NO3
# 0.86 0.68

0.00 0.27

PO4
# 0.64

#0.16
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structure in the effects of the different enviromental
factors. For example, the correlation #0.51 between
temperature and salinity in the environment is nearly
identical to the correlation #0.59 between the
effects of the same two variables, but the correlation
0.86 between phosphate and nitrate in the environ-
ment strongly contrasts with the essentially zero
correlation in their effects. When the correlations
are similar between the environmental variables and
their effects, as is the case for temperature and
salinity, we interpret this as meaning that the
selective effect of each variable is fortuituously
aligned with the environmental covariation, or that
one variable has a relatively weak effect relative to the
other, and that the estimated effect is due to the
environmental correlation. On the other hand, the
strongly contrasting correlations between nitrate and
phosphate suggests a tradeoff in competitive ability
for nitrate and phosphate leading to niche differ-
entiation.
The species-specific variance parameters r2

s are
drawn from a gamma distribution with parameters a
and b that are identical for all species. The expected

value of r2
s is the mean a/b of its Ga(a,b) distribution.

It follows that a/b provides a community-level
measure of unexplained variability. The posterior
means of the parameter vector (a, b) for the full and
the null model were (2.7, 0.4) and (3.1, 0.28),
respectively, implying that the included environmen-
tal variables account for 39% of the unexplained
variance in the null model as 1#(2.7/0.4)/(3.1/
0.28)"0.39.

We examined the assumption of no serial correla-
tion between the monthly species abundances con-
ditionally on the included environmental variables,
by computing the conditional residual errors
es,k,d"ys,k,d#ms,k,d for a random sample of 10 species
at different depths, and checking their correlograms
(autocorrelation plots) to see if they do not exhibit
temporal dependence. The residuals were more or
less serially uncorrelated as illustrated by the repre-
sentative correlograms of four species namely,
Bacterium sp., Chaetoceros compressus, Synechocossus
sp. and Trichodesmium thiebautii shown in Figure 4.
The small autocorrelation observed in the residual
correlograms of some species (e.g. Synechococcus sp.)
indicates that there may be some memory, but the
serial correlations are weak and unlikely to affect our
results.

It may be interesting to ask how changing the
value of an environmental variable would alter a
species’ growth rate to determine its future abun-
dances. This requires more detailed data recorded at
time intervals comparable to the generation time of
the study species, which is much shorter than a
month for phytoplankton. Our data were recorded
monthly, at different depths and involve many
missing observations. Moreover, the weak autocor-
relation in the conditional residuals (Figure 4)
implies that the abundance of a particular species
at a specific depth is roughly independent of its
abundance in the previous month after controlling
for the environmental conditions. Similarly, the
relatively long elapsed time between consecutive

Figure 2. Scatterplots of estimated effects for select pairs of variables. (A) Nitrate and phosphate concentration, (B) nitrate and silicic acid

concentration, (C) temperature and pH. Colours indicate the functional group of each species: diatoms (red), dinoflagellates (green),
coccolithophores (grey), cyanobacteria (cyan), silicoflagellate (red), ciliate (blue). Diatoms are open circles, all other species are filled

circles.

Figure 3. Principal component analysis of effects for all seven

environmental variables. Colours and symbols indicate functional
groups as in Figure 2. The arrows are projections of vectors in the

direction of each environmental axis; clockwise from the top

(‘noon’): silicic acid, nitrate, salinity, pH, phosphate, temperature

and irradiance.
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observations means that the data are not sufficient to
describe the influence of intraspecific and interspe-
cific interactions in the previous time step on the
current abundance of a given species.

Discussion

Phytoplankton communities are diverse and exhibit
changes in structure at a wide range of temporal and
spatial scales (Martin 2003; Durham & Stocker
2011). Our results identified numerous differences
in optimal environmental conditions across species,
highlighting the role of habitat selection, niche
differentiation and tradeoffs in the composition of
a phytoplankton community. The environmental
variables in our model can be categorized as either
conditions (temperature, salinity) or resources (light,
macronutrients, and DIC through the pH proxy).
Changes in conditions could be expected to change
community composition because individual species
thrive at particular temperature or salinity based on
ecophysiological differences (Eppley 1972; Brand

1984). Alternatively, changes in phytoplankton

abundance may cause changes in environmental

variables, particularly pH and irradiance. Changes
in temperature and salinity may be related to

advection of new water masses and new commu-

nities and prompt species succession which may not
necessarily be due to environmental forcing. Regard-

less of the nature of the effect, our statistical results

indicate a relationship between environmental vari-
ables and the abundance of individual species.

Nutrient availability can be assessed through the

combination of the standing stock concentration of

nutrient pools (nitrate, phosphate and silicic acid
concentration) and the flux of those nutrients into

the euphotic zone. Significant effects for nutrients

can be interpreted as evidence species are resource
limited in the case of positive effects, or inhibited in

the case of negative effects, or they could be a signal

of relative competitive ability for the nutrient across
species. We do not have direct observations of

nutrient flux at the CARIACO station, but tempera-

ture changes are a good proxy for nutrient supply

Figure 4. Correlograms of the model residuals for four selected species (Bacteriastrum sp., Chaetoceros compressus, Synechococcus sp. and
Trichodesmium thiebautii) at 7 m depth. The vertical bars represent the estimated autocorrelation coefficients for observations that are k
months (the lag) apart. The dotted horizontal lines are the 95% confidence bounds for a correlation of zero. These correlograms suggest

that the residuals can reasonably be assumed to be serially uncorrelated, in line with our model assumption.
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rate as the cold upwelled water has much higher
nutrient concentrations than surface water. To
interpret the complex signal resulting from both
nutrient concentrations and temperature, it helps to
consider two extreme situations: (1) upwelling of
cold nutrient-rich waters and (2) a stratified warm
layer depleted in nutrients. These two situations are
expected to select different species of phytoplankton:
elevated nutrient supply rates as indicated by de-
creasing temperature will support rapidly growing
species with high nutrient demands while a stratified
layer will select species with the best competitive
ability for the limiting resources (Behrenfeld et al.
2006; Dutkiewicz et al. 2009). In practice, a
particular community may illustrate elements of
both situations.
Most species with significant temperature effects

have increased abundance at lower temperatures,
consistent with changes in turbulent mixing and the
consequent changes in resource supply rate and
short-term variability (Behrenfeld et al. 2006).
Most of these opportunistic species are seasonally
abundant diatoms, but there are seven species from
the other functional groups with similar temperature
effects. At the other extreme, positive temperature
effects are found in some dinoflagellates and
Trichodesmium thiebautii which are known to thrive
in stratified waters. An analysis of environmental
response functions for phytoplankton in the North
Atlantic also showed that diatom species were more
likely to be found in cooler waters compared to
dinoflagellates (Irwin et al. 2012). At the CARIACO
station, temperature has a strong seasonal cycle
driven by changes in the winds with the lowest
temperatures in March approximately 48C cooler
than the warmest temperatures in November
(Müller-Karger et al. 2010), so the interpretation
of temperature effects as due to seasonal succession
driven by hydrographic changes and changes in
resource availability seems reasonable. Macronutri-
ent concentrations have a significant effect for about
half the species studied, with the strongest effects for
nitrate among the diatoms, but the effects are
secondary to those of temperature. For most species,
the nitrate effect is consistent with temperature
effects (higher nutrient concentrations are associated
with increased abundance), but there are a few
species with negative nitrate concentration effects
and negative temperature effects, or effects signifi-
cant for only one of these variables, indicating there
is distinct information regarding the availability of
nitrate provided by each variable. As phosphate
effects are generally smaller and much less likely to
be significant, we conclude that few species are
phosphate-limited or that the detection limit of
phosphate is too high to resolve these effects; some

notable exceptions that have positive phosphate
effects and non-significant nitrate effects are the
diatoms Bacteriastrum sp., Thalassiosira rotula,
Eucampia zodiacus, Rhizosolenia hebetata and the
cyanobacterium Synechococcus sp.

In the environment, all three macronutrients are
fairly strongly correlated, but the signal in the effects
is more complex. Nitrate and phosphate effects are
uncorrelated: a few species have effects with the
same sign (3 species), a few have opposite sign
(4 species), but most species with a significant effect
for one of these macronutrients do not have a
significant effect for the other (26 species). These
results indicate there is a tradeoff between nitrate
and phosphate affinity relative to demand, or that
phytoplankton species are responding selectively to
only one of nitrate and phosphate, respectively.
Whatever the explanation, these correlations indi-
cate that many species are limited by nitrate and
fairly few are limited by phosphate. Silicic acid
effects are positively correlated with nitrate effects
among the diatoms and essentially uncorrelated for
other taxa (Figure 3), although silicic acid effects are
generally smaller and less likely to be significant than
nitrate effects. This matches the expectation that
diatoms, which require a specific amount of silicic
acid to transit through their cell division cycle
(Brzezinski 1992), and are more abundant at higher
silicic acid concentrations, can achieve a tradeoff for
nitrate relative to phosphate but not for nitrate
relative to silicic acid. Species which do not require
silicic acid (the dinoflagellates and cyanobacteria)
are much less likely to have a significant silicic acid
effect and the effects are uncorrelated with nitrate
and phosphate concentration effects (Figure 3).

Irradiance is generally not limiting and may be
slightly inhibiting the abundance of many species.
The irradiance in the upper mixed layer (0!30 m)
averages 18.6 mol photons m#2 day#1, correspond-
ing to an average peak irradiance during the day of
215 mmol photons m#2 s#1. This indicates phyto-
plankton cells in the mixed layer can expect to see
wide variations in that light during a single generation,
including inhibitory irradiances (Kirk 2011,
p 330!87). These irradiances are not likely to be
subsaturating for growth for most of the species, and
the fluctuations in the mixed layer are expected to
impose significant photoacclimation and photoinhi-
bition costs (Six et al. 2007; van de Poll et al. 2007;
Alderkamp et al. 2010; Key et al. 2010). Thus it is not
surprising that irradiance at this site has a negative
effect for most species, is significant for half the
species, and all but one of the significant effects
are negative. Notable exceptions are Chaetoceros
sp. (diatom), Mesodinium rubum (ciliate) and
Trichodesmium thiebautii sp. (cyanobacterium), which
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have significant positive effects. Trichodesmium
thiebautii is known to have a high energy demand
because of the high cost ofN2 fixation (Andresen et al.
2010), although there is generally high irradiance at
this tropical site so this physiological factor may be
unimportant at the ecological scale. Increased phyto-
plankton abundance will lead to a decrease in
irradiance with depth, so the negative effects of
irradiance on abundance could be attributed to
phytoplankton changing the light field. Note, how-
ever, that while temperature effects are generally
largest for the most abundant species, there is little
correlation between the magnitude of irradiance
effects and individual species abundance (Figure 2),
suggesting that the irradiance effects may be primarily
physiological.
The simplest interpretation of pH effects is that

increases in phytoplankton abundance are drawing
down dissolved inorganic carbon (DIC) and increas-
ing pH; the observed pH effects are a consequence of
abundance, not a cause of them (Litt et al. 2010).
Chemically, increased pH indicates lower pCO2,
lower concentrations of DIC, HCO3

#, and increased
concentration of CO3

2, so the positive pH effects
observed are opposite to what would be expected
from a CO2 fertilization perspective. The pH effect
on abundance is not simply a result of its positive
correlation with temperature since the correlation
between pH and temperature effects is strongly
negative across all taxa (Figure 2, Table III). A
challenge to this interpretation arises for species with
positive temperature effects and negative pH effects,
which are more abundant at higher temperatures
and lower pH (Heterocapsa triquetra, Neoceratium
lineatum, Gymnodinium mitratum among the dino-
flagellates and Thalassionema delicatula in the dia-
toms). These are among the least abundant of our 67
most frequently observed species; a positive effect of
pH might be difficult to observe for these species
which are a minor component of their communities
and their pH effects may be a signal that these
species are most abundant when other species are
least abundant because of differences in their niches.
Coccolithophores release DIC as a consequence of
forming calcium carbonate liths, but the
temperature!pH relationship does not seem to be
weakened or reversed for these species, indicating a
minor role for calcification on pH at this site, or
lower pH waters may inhibit the growth of cocco-
lithophores, leaving an apparent positive effect of
pH.
The responses of the two cyanobacteria are

unusual in that they are frequently contrasting both
with each other and with the majority of the
phytoplankton species (Figure 4, cyan symbols).
This is expected because they have very different

niches: Synechococcus sp. is small, with a relatively
high phosphate requirement while Trichodesmium
thiebautii fixes N2 gas as its source of nitrogen, and
is more likely to be found in stratified, non-upwelling
warm waters with little fixed nitrogen where it can
grow with less competition. These traits are consis-
tent with their estimated environmental effects.
Synechococcus sp. has among the largest phosphate
effect, and Trichodesmium sp. has one of the highest
temperature and irradiance effects (although the
irradiance effect is not quite significant). C : P and
N : P ratios from laboratory studies are low for
Synechococcus sp. (52 : 1 and 8.7 : 1, respectively)
and high for Trichodesmium sp. (161 : 1 and 31 : 1,
respectively) consistent with high P demand by
Synechococcus sp. and high irradiance growth and
N2 fixation by Trichodesmium sp. (Quigg et al. 2010;
see also the online supplementary material available
on this article’s webpage).

Phytoplankton communities exhibit a great deal of
variation due to a combination of regulation of
growth by bottom-up factors such as resource
availability (Grover 1997), variation in mortality
due to grazing, viral and parasitoid attack (Alpine
& Cloern 1992; Mühling et al. 2005), and demo-
graphic drift among species (neutral variation).
Bottom-up factors can be complex, depending on
nutrient supply rates and ratios (Tilman 1982), light
availability and photoinhibition (Six et al. 2007;
Alderkamp et al. 2010), species-specific competitive
ability for resources (Litchman 2007) and other
factors influencing physiological responses such as
temperature (Eppley 1972). Variation in mortality is
much less frequently measured than the factors
promoting growth due to the technical challenges
in making measurements. None of our environmen-
tal variables are good proxies of grazing rates or
whether the abundance of a particular population is
determined by grazer control or resource supply at a
particular time.

We have identified significant effects for one or
more of our environmental variables in 63 of 67
species examined, demonstrating the important im-
pact environmental variables have on the composi-
tion of the major species in the phytoplankton
community observed at the CARIACO station. We
restricted our model to bottom-up factors which
accounted for 39% of the variation in log
abundance. Much less of the total variance is
explained by our model compared to models of total
chlorophyll (Irwin & Finkel 2008) because of the
tremendous challenge of predicting log abundance
for 67 individual species. We have not ruled out the
possibility of purely random fluctuations in the
numerous infrequently observed species in this
community; in fact, the trend of decreasing magni-
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tudes of environmental effects with median abun-
dance for each species (Figures 1a,b) suggests that
many of the less-abundant species, most of which
were omitted from our analysis, may be effectively
random samples governed by stochastic variations.
Despite these caveats, our results strongly indicate
that environmental changes, whether short-term or a
result of climate change, should be expected to
have dramatic consequences on the relative abun-
dance of the dominant phytoplankton species in a
community.
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